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Slow crack growth of brittle materials with

exponential crack-velocity formulation—static

fatigue
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The life prediction analysis based on an exponential crack-velocity formulation was made
and examined using a variety of experimental data on advanced structural ceramics in
constant stress (‘static fatigue’ or ‘stress rupture’) testing at ambient and elevated
temperatures. The data fit to the relation between ln (time to failure) versus applied stress
was be very reasonable for most of the materials studied, resulting in a similar degree of
accuracy as compared with the power-law crack-velocity formulation. The major limitation
in the exponential crack-velocity formulation, however, was that the inert strength of a
material must be known priori to evaluate the important slow-crack-growth (SCG)
parameter n, a drawback as compared with the conventional power-law crack-velocity
formulation. C© 2005 Springer Science + Business Media, Inc.

1. Introduction
Advanced ceramics are candidate materials for struc-
tural applications in advanced heat engines and heat
recovery systems. The major limitations of these mate-
rials in hostile environments in aeroengine applications
are environmental degradation particularly for silicon-
based ceramics, susceptibility to foreign object dam-
age, slow crack growth (SCG), and creep. Slow crack
growth of inherent defects or flaws generated by foreign
object damage or by environmental attacks can occur
until a critical size for catastrophic failure is reached. To
ensure accurate life prediction of ceramic components,
it is important to accurately evaluate SCG parameters
of a material with specified loading and environmental
conditions.

Life prediction parameters of a material depend on
what type of crack-velocity formulation is used to de-
termine them. The power-law crack-velocity formula-
tion has been used for several decades to describe SCG
behavior of a variety of brittle materials ranging from
glass to glass ceramics to advanced structural ceramics
[1–20]. The primary advantage of the power-law for-
mulation over other crack-velocity formulations is the
simplicity in its mathematical expression of lifetime
analysis. It has also been observed that the power-law
formulation has adequately described the SCG behav-
ior of many brittle materials. Because of these merits,
the power-law formulation has been used in two recent
ASTM test standards [21, 22] to determine SCG pa-
rameters of advanced ceramics in constant stress-rate
testing at ambient and elevated temperatures. Alterna-
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tive crack-velocity formulation takes exponential forms
to account for the influence of other phenomena such
as corrosion reaction [23], diffusion control [24], ther-
mal activation [25], chemical reaction with constant tip
configuration [26], kinetic crack growth [27] and oth-
ers [28]. However, these exponential forms, in general,
do not result in simple mathematical expressions of
life prediction formulation, although the forms might
better represent the actual SCG behavior of some mate-
rials. Because of this mathematical inconvenience, the
exponential crack-velocity formulation has rarely been
used for brittle materials as a means of life prediction
methodology.

In this paper, the exponential crack-velocity formu-
lation was revisited and analyzed to achieve a more
convenient and simplified life prediction under con-
stant stress (‘static fatigue’ or ‘stress rupture’) con-
dition through a numerical procedure. The resulting
analysis obtained with the exponential formulation was
compared with that of the power-law formulation to
assess which would yield a better life prediction
methodology in terms of accuracy and convenience.
A variety of experimental data, determined in static fa-
tigue loading for advanced structural ceramics at both
ambient and elevated temperatures, were utilized for
this objective. More detailed descriptions concerning
the analysis and data can be found in previous re-
ports [3, 4]. Companion papers describes the exponen-
tial crack-velocity formulations under constant stress-
rate (‘dynamic fatigue’) [29] and cyclic fatigue [30]
loading.
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2. Theoretical background
2.1. Power-law crack-velocity formulation
The widely utilized, empirical power-law crack veloc-
ity for glasses and advanced ceramics above the fatigue
limit is expressed in the following familiar form [1, 2]

v = da

dt
= A (KI/KIc)n (1)

where v, a and t are crack velocity, crack size and time,
respectively. KI and KIc are mode I stress intensity fac-
tor and mode I critical stress intensity factor (or frac-
ture toughness), respectively. A and n are called mate-
rial/environment dependent SCG parameters. Constant
stress (‘static fatigue’ or ‘stress rupture’) testing is per-
formed by applying constant stress to machined test
specimens to determine time to failure. The time to fail-
ure in constant stress can be analytically derived from
Equation 1 to give the following familiar relation [6]:

tf = Dσ−n (2)

where tf is time to failure, and σ is constant applied
stress. The parameters D can be expressed as follows:

D = BSn−2
i (3)

where Si is the inert strength whereby no SCG occurs;
B = 2KIc/[AY2 (n − 2)] where Y is the crack geom-
etry factor in the relation of KI = Yσa1/2. The SCG
parameters n and D can be obtained by a linear re-
gression analysis with experimental data in conjunction
with Equation 2. Hence, it is straightforward to deter-
mine SCG parameters n and D by least-squares fitting
of the data (log tf versus log σ ), which is the most ad-
vantageous feature of the power-law crack-velocity for-
mulation. This convenience and merit in mathematical
simplicity in addition to the use of routine test tech-
niques have led for several decades to the almost exclu-
sive use of the power-law crack velocity formulation in
life prediction analysis and testing (in either constant
stress-rate or constant stress) for many brittle materials
over a wide range of temperatures.

2.2. Exponential crack-velocity formulations
Several crack-growth theories with exponential crack-
velocity expression have been proposed based on other
factors including chemically assisted corrosion reaction
[23], diffusion-controlled stress rupture [24], thermally
activated process [25], chemical reaction with constant
crack-tip configuration [26], kinetic crack growth [27],
and others [28]. Detailed descriptions regarding vari-
ous crack growth theories are beyond the scope of the
paper. The generalized exponential crack velocities in
association with stress intensity factor can take follow-
ing mathematical expressions:1

v = A exp[n(KI/KIc)] (4)

v = A (KI/KIc) exp[n(KI/KIc)] (5)

1 Equation 4 is the form used in Refs. [23, 26]; Equation 7 in Refs. [27,
31]; Equation 8 in Ref. [28]; and Equations 5 and 6, only mathematical
forms in nature, were used in Ref. [7], somewhat related to Ref. [25].

v = A (KIc/KI) exp[n(KI/KIc)] (6)

v = A exp[n(KI/KIc)2] (7)

v = A (KI/KIc) exp[n(KI/KIc)2] (8)

where A and n are SCG parameters and are different
from those used in the power-law formulation.

Unlike the power-law crack velocity formulation, the
exponential crack velocity forms do not yield simple,
analytical expressions of the resulting time to failure
as a function of applied stress. Some attempts have
been made under constant stress-rate or constant stress
to obtain corresponding lifetime expressions through
analytical or numerical integration [7, 26, 32, 33], in-
corporating in some cases with linear or nonlinear re-
gression analysis. However, this approach still involves
complexity in regression technique, as compared to
the simple least-squares approach in the power-law
formulation.

For the purpose of generalization, Equation 4 was
chosen in this paper as a primary crack-velocity for-
mulation. An additional analysis using other crack-
velocity forms of Equations 5 to 8 was also made and the
results will be discussed in the section Other Exponen-
tial Formulations. To minimize the number of parame-
ters to be specified individually (such as A, a, σ , Si, KIc,
and t) and to accommodate more complex crack veloc-
ity formulations such as Equations 5 to 8 as well, the
solution must be sought numerically.2 Hence, for this
purpose it is convenient to use a normalized scheme, as
used previously for the power-law velocity formulation
with complex stress intensity factor expressions [9, 17,
34]:

K ∗ = KI

KIc
; T ∗ = A

ai
t ; C∗ = a

ai
; σ ∗ = σ

Si
(9)

where K ∗, T ∗, C∗, and σ ∗ are, respectively, normalized
stress intensity factor (SIF), normalized time, normal-
ized crack size, and normalized applied stress. ai is the
critical crack size in the inert condition or is the ini-
tial crack size. Using these variables, the primary ex-
ponential crack-velocity equation, Equation 4, can be
normalized as follows:

dC∗

dT ∗ = enK∗
(10)

The corresponding normalized SIF K ∗ in constant
stress loading is expressed as

K ∗ = σ ∗[C∗]1/2 (11)

2 The companion papers by the authors also dealt with the primary ex-
ponential crack velocity formulation as well as with more complicated
equations (Equations 5–8) under constant stress-rate (“dynamic fa-
tigue”) [29] and sinusoidal fatigue (“cyclic fatigue”) [30] loading con-
ditions. Closed-form solutions can be hardly obtained in these cases
so that an appropriate numerical procedure should be utilized. To be
consistent in approach, the numerical procedure previously applied to
dynamic and cyclic fatigue loadings was used in this paper for static
fatigue. In fact, any arbitrary crack-velocity equations, regardless of
complexity in loading configuration or in stress-intensity-factor ex-
pression, can be solved by the numerical analysis in conjunction with
the Runge-Kutta approximation described in this section.
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Figure 1 Numerical results of normalized time to failure T ∗
f as a function

of normalized applied stress σ ∗ in constant stress (‘static fatigue’ or
‘stress rupture’) for different values of SCG parameter n.

As typical of ceramics, the crack size at instability ei-
ther in an inert or fatigue environment was assumed
to be small compared with the body of the specimens
or components (i.e., an infinite-body assumption). The
differential equation, Equation 10, was solved by step-
wise, time-incremental, numerical integration using a
fourth-order Runge-Kutta method [35] starting from
the initial crack size (C∗ = 0) at T ∗ = 0 to the final
crack size (C∗

f ) at which the instability conditions of
K ∗ = 1.0 and dK ∗/dC∗ > 0 were satisfied. At instabil-
ity, the critical values such as critical crack size (C∗

f ) and
time to failure (T ∗

f ) were obtained for given n and σ ∗.
The numerical procedure was initiated with an input
datum of n for a given applied stress (σ ∗) and com-
pleted until a given range of applied stresses was cov-
ered. The procedure was repeated for other values of
n. Eight different n values ranging from n = 5 to 100
were employed. Crack growth as a function of time
from initiation (T ∗ = 0) to instability (T ∗ = T ∗

f )
was also obtained under any given combination of n
and σ ∗.

The numerical results of normalized time to failure
T ∗

f as a function of normalized applied stress σ ∗ are
shown in Fig. 1, where ln T ∗

f was plotted against σ ∗
for different n values. The general trend of the solution
can be summarized in terms of the convergence of ln
T ∗

f close to zero with σ ∗→ 0, the increased SCG sus-
ceptibility with decreasing n values, and the linearity
between lnT ∗

f and σ ∗ in the range of σ ∗ from 0.2 to
0.9. As a consequence, the relationship between nor-
malized time to failure and normalized applied stress
can be expressed as

ln T ∗
f = −n′ σ ∗ + β (12)

where n′ is the slope and β is the intercept. The lin-
earity between ln T ∗

f and σ ∗ was manifest when the
square of correlation coefficient of r2 ≥ 0.995 for each
curve is considered. Hence, the slope n′ and intercept
β can be determined in a reasonable accuracy by a lin-
ear regression analysis of the numerical results based
on Equation 12. The relationship between the slope n′
and the SCG parameter n (an input datum) is shown in

Figure 2 Relationship between SCG parameter n and n′ in constant
stress (‘static fatigue’ or ‘stress rupture’).

Figure 3 Relationship between intercept β and SCG parameter n in
constant stress (‘static fatigue’ or ‘stress rupture’).

Fig. 2 and has the following relation:

n′ = 0.983n + 3.344 (13)

with r2 = 0.9997. The difference between n′ and n
was ≥8% for n ≤ 30 and n ≤ 5% for n ≥ 40 so that
a further approximation of Equation 13 was made for
the case of n ≥ 40 as

n′ ≈ n (14)

The function of β with respect to n is depicted in Fig. 3,
where the intercept β decreases with increasing n val-
ues, resulting in the best-fit relation

β = −1.913 + 4.985 e−0.049 n (15)

with r2 = 0.9907.
For the non-normalized expression, Equation 9 can

be used to reduce Equation 12 to

ln tf = −n′

Si
σ + χ (16)

where

χ = ln
ai

A
+ β (17)

Therefore, n′ and χ can be easily obtained from the
slope and intercept, respectively, by a simple linear
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TABL E I A summary of slow-crack-growth (SCG) parameters and correlation coefficients of data-fit for various brittle materials using both
exponential and power-law crack-velocity formulations in constant stress loading

Exponential formulation Power-law formulation

SCG parameters SCG parameters

Materials
Test
temp. (◦C) n χ A (m/s) Corr. coeff. r2 n Log D A (m/s) Corr. coeff. r2

Alumina [36] RT 87.6 63.3181 5.23E-33 0.7541 54.5 126.7306 370 0.7538
Alumina (indented) [37] RT 61.0 47.3313 1.25E-25 0.4367 39.7 86.3279 0.73 0.4411
NCX34 Si3N4 [38] 1200 37.3 27.4263 2.33E-17 0.8837 18.5 51.3172 2.20E-3 0.8955
NCX34 Si3N4 [38] 1300 36.3 22.5133 3.15E-15 0.9055 13.5 36.7292 3.37E-3 0.8988
NCX34 Si3N4 (tension) [38] 1200 27.0 17.5694 1.22E-12 0.6278 6.4 18.3751 1.43E-5 0.6024
NC203 SiC [39] 1300 27.6 20.2295 2.58E-14 0.3058 7.7 42.2076 1.90E-3 0.3013
Alumina [19] 1000 36.3 15.6789 5.53E-12 0.9638 15.9 20.3067 0.07 0.9798
Ceralloy 147A Si3N4 [40] 1200 22.9 15.5657 9.53E-12 0.6094 9.6 22.5671 3.90E-4 0.6051
Ceralloy 147A Si3N4 [40] 1300 38.8 17.9811 3.55E-13 0.8927 8.6 25.0071 0.02 0.8860

1SCG parameters n, χ and D were determined with units of time to failure in seconds and stress in MPa.
2Mode of tests was in four-point flexure, except for ‘NCX34 (tension).’
3r2 indicates square of correlation coefficient in regression.
4Tests at room temperature (‘RT ’) were performed in distilled water.

regression analysis of experimental data of ln tf as
a function of σ . With n′ determined from the slope
and Si, the SCG parameter n can be evaluated from
Equation 13. The SCG parameter A can be estimated
from Equation 17 with determined χ together with
β (Equation 15) and a known value of ai. Note that
Equation 16 is significantly simpler than any other ex-
ponential solutions [7, 33]. The A notable difference
in constant stress between the power-law and the expo-
nential formulations is that in the power-law formula-
tion, log tf is plotted as a function of log σ as seen in
Equation 2; whereas, in the exponential formulation, ln
tf is plotted as a function of σ . The knowledge of inert
strength (Si) of a material, however, is a prerequisite in
determining nin the exponential formulation, which is
not the case in the power-law formulation.

2.3. Other exponential formulations
A comparison of solutions from more complicated ex-
ponential SCG formulations is shown in Fig. 4. The
figure presents the results of four exponential formu-
lations of Equations 5 to 8 for n = 20 and 80 and
compares them with those of the primary formulation

Figure 4 Results of numerical solutions using four different exponential
formulations of Equations 5 to 8 compared with the primary exponential
formulation of Equation 4 for selected SCG parameters of n = 20 and
80.

of Equation 4. The difference in solution between the
primary equation and two other first-order equations
Equations 5 and 6 was insignificant, particularly at
higher applied stresses, giving rise to a reasonable lin-
earity between the dependent/independent variables re-
lated. This insignificant difference in solution as well
as the linearity allows one to conclude that the pri-
mary equation would be representative of all three first-
order exponential SCG formulations. By contrast, the
remaining second-order formulations Equations 7 and 8
showed an appreciable deviation and a notable nonlin-
earity. Therefore, the determination of corresponding
SCG parameters in this case differs from that of the
primary equation and should only be attempted under
appropriate circumstances. It is noted that the difference
in solution between the two second-order formulations
was negligible, implying that the order of KI/KIc in the
exponential term is indeed a key factor to affect most
significantly the results of solution in constant stress,
as also observed in constant stress-rate loading [29].

3. Experimental verification and discussion
3.1. Constant-stress tests data
The experimental data determined previously in con-
stant stress (‘static fatigue’ or ‘stress rupture’) testing
for advanced ceramics at both room (RT ) and ele-
vated temperatures were used to check the validity of
the exponential SCG analysis. The advanced ceram-
ics thus used included 96 wt% alumina [19, 36, 37],
NCX34 silicon nitride (Si3N4) [38], NC203 silicon car-
bide (SiC) [39], and Ceralloy 147A silicon nitride [40]
(see also Table I). Typical examples of time to fail-
ure as a function of applied stress for some of these
ceramics are shown in Fig. 5, where applied stress
was plotted against ln (time to failure) in accordance
with Equation 16.3 The decrease in time to failure with

3 Time to failure is a dependent variable whereas applied stress is an
independent variable; thus, ideally the resulting plots should reflect this,
such as Fig 1. However, the convention is reversed such that applied
stress is plotted with respect to time to failure. All figures in Figs 5 and
6 use this convention for generality.
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Figure 5 Ln (time to failure tf) versus applied stress σ for some selected
ceramics with the exponential crack-velocity formulation using Equation
16 under constant stress. (a) 96 wt% alumina in room-temperature (RT )
distilled water in flexure [36]; (b) alumina at 1000◦C in air in flexure
[19]; (c) NCX 34 silicon nitride at 1200 and 1300◦C in air in flexure
[38]; (d) NC203 silicon carbide at 1300◦C in air in flexure [39]. Solid
lines represent best-fit.

increasing applied stress, which represents the suscep-
tibility to slow crack growth, is dependent on mate-
rial type and test temperature. The individual SCG pa-
rameters n and χ of each material under given test
conditions were determined from the slope and inter-

Figure 6 Ln (time to failure tf) versus applied stress σ for some selected
ceramics with the power-law crack-velocity formulation using Equation
2 under constant stress. (a) 96 wt% alumina in room-temperature (RT )
distilled water in flexure [36]; (b) alumina at 1000◦C in air in flexure
[19]; (c) NCX 34 silicon nitride at 1200 and 1300◦C in air in flexure
[38]; (d) NC203 silicon carbide at 1300◦C in air in flexure [39]. Solid
lines represent best-fit.

cept by the linear regression analysis of ln tf versus
σ based on Equation 16, together with inert strength
[30]. The resulting SCG parameters and the correlation
coefficients in regression analysis for individual ma-
terials are summarized in Table I. Fig. 6 presents the
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power-law counterpart plots based on the conventional
power-law relation of Equation 2. The corresponding
SCG parameters n and D and the correlation coeffi-
cients for the power-law case are also listed in Table 1.
Comparing the results in Figs 5 and 6 together with
the correlation coefficients in Table I reveals no signif-
icant difference in data fit between the exponential and
power-law formulations: The exponential formulation
resulted in as good data-fit as that of the power-law
formulation.

3.2. Relationship in SCG parameter n
Because of the functional form of crack velocity equa-
tion in either the exponential or power-law formulation,
the SCG parameter n has the most sensitive and signif-
icant effect on lifetime; thus, accurate estimation of
SCG parameter n is very important and must always
be emphasized. In fact, the SCG parameter n in the
conventional power-law formulation has been used as
an important measure of SCG susceptibility of brittle
materials: There is significant SCG susceptibility for
n < 30, intermediate susceptibility for n = 30 to 50,
and insignificant susceptibility (or highly resistant to
SCG) for n > 50. Therefore, it is worthwhile to estab-
lish the relationship of n in the exponential formulation
to that in the power-law formulation, which can be done
using the n values from Table I. Fig. 7 illustrates the re-
lationship between the SCG parameters from each for-
mulation. The overall relationship was approximated
as follows:

nexp = 1.18 npow + 18.37 (18)

with a correlation coefficient of r2 = 0.9113. The sub-
scripts ‘exp’ and ‘pow’ denote exponential and power-
law formulations, respectively. The nexp is greater than
npow by approximately 20. Fig. 7 also includes the rela-
tionship determined from the data in constant stress-rate
testing [29], where the corresponding relationship was

nexp = 0.96 npow + 12.52 (19)

with r2 = 0.9511. Hence, the two relationships
(Equations 18 and 19) were not in good agreement.

Figure 7 Relationship of SCG parameter n of exponential formulation
to that of power-law for various ceramics from Table I. Relationship
determined for constant stress-rate (‘dynamic fatigue’) loading [29] in-
cluded for comparison.

Figure 8 Relationship of SCG parameter n in constant stress-rate load-
ing [29] and in constant stress. (a) Exponential crack-velocity formula-
tion. (b) Power-law crack-velocity formulation.

The degree of agreement in n between the two differ-
ent loadings can be seen easily if n in constant stress-
rate loading [29] is plotted against that in constant
stress, determined for each individual material, which
is shown in Fig. 8. Although the overall relationship in n
between constant stress-rate loading and constant stress
seems to be 1:1 in the exponential formulation, the data
scatter was significant. The corresponding relationship
in the power-law formulation (Fig. 8b), however, yields
good agreement between constant stress-rate loading
and constant stress, which has been typical of many
brittle materials observed at the NASA Glenn. The rea-
son for less agreement in the exponential formulation
is not yet clear and requires more data.

3.3. SCG parameter A and crack velocity
The parameter A can be determined using experimen-
tal data based on Equation 17, whereas the parame-
ter A in the power-law formulation can be determined
from Equation 3 with the B expression. The initial
crack size or the critical crack size in the inert con-
dition can be estimated using the fundamental relation
of KIc = Y Sia

1/2
i together with the values of KIc and

Si [20, 30], assuming the crack configuration to be a
semicircle (Y = 2/

√
π ) and the crack size to be small

compared with components or test coupons (i.e., an
infinite-body approach). The resulting A parameters
for each material thus estimated for both the expo-
nential and power-law formulations are also shown in
Table I. Unlike SCG parameter n, no definite relation-
ship existed for A between the two formulations, which
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Figure 9 Comparison of crack velocity as a function of stress intensity factor (KI/KIc) in both the exponential and the power-law formulations for
the ceramic materials used in this work.

was similar to that observed in constant stress-rate load-
ing [29]. Notwithstanding, the actual crack velocities
for a given stress intensity factor seem not much dif-
ferent from each other with some exceptions, as can be
seen from the results of log v vs. KI/KIc in Fig. 9.

3.4. Limitation of exponential formulations
Although the exponential formulations used to deter-
mine SCG parameters required somewhat inconvenient
numerical procedures, their resulting simplified solu-
tions under constant stress showed to yield almost the
same degree of simplicity in data analysis as well as
in the agreement in experimental data as those in the
power-law formulation. The same was observed to be
true for constant stress-rate loading condition, as ap-
peared from the previous results [29]. However, that
inert strength of a material must be known in advance
to determine the major SCG parameter n can be a draw-
back in using the exponential formulation in terms of
simplicity and accuracy, as compared with the power-
law counterpart that does not require knowledge of the
inert strength. Inert strength of a material at room tem-
perature, of course, is not difficult to determine; how-
ever, even in this case care must be exercised to pro-
vide a perfect inert condition by using an appropriate
conditions (environment and test rate) so that an accu-
rate inert strength can be evaluated. A greater burden
would be determining inert strength at elevated tem-
peratures, although the authors have done a pioneering
work in this subject using a total 17 advanced ceram-
ics [20] with some conclusive results that the elevated-
temperature inert strength of a ceramic material can be
estimated with a ultra-fast test rate of ≥105 MPa/s and
that the elevated-temperature inert strength is close to
that of the room-temperature. However, to get another
SCG parameter A, inert strength is equally needed ei-
ther in the exponential formulation or in the power-law
counterpart.

4. Conclusions
1. The data fit to the ln (time to failure)-versus-

applied stress relation numerically solved in the ex-

ponential crack-velocity formulation was found very
reasonable for most of the advanced ceramics used.

2. A reasonable relationship of slow-crack-growth
(SCG) parameter n existed under ‘static fatigue’ load-
ing, determined with the exponential formulation to
those determined with the power-law formulation.
However, this relationship was not similar to those de-
termined under constant stress-rate loading.

3. Despite little difference in the data fit, the ma-
jor limitation in the requirement of knowledge of in-
ert strength in evaluating the major SCG parameter n
makes the power-law formulation a more preferable
choice for life prediction than the exponential formu-
lation. Also, the exponential approach would require
in many cases an inconvenient numerical analysis even
when a slight change in loading from static to time-
varying configuration occurs.
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